Đề thi học kì 2 Toán Lớp 7 Sách Chân trời sáng tạo - Đề số 4 (Có lời giải chi tiết)
Câu 2. Trong các sự kiện, hiện tượng sau, đâu là biến cố chắc chắn?
A. Mặt Trời quay quanh Trái Đất B. Khi gieo đồng xu thì được mặt ngửa
C. Có 9 cơn bão đổ bộ vào nước ta trong năm tới D. Ngày mai, Mặt Trời mọc ở phía Đông
Câu 6. Cho tam giác MNP có NP =1cm,MP = 7cm. Độ dài cạnh MN là một số nguyên (cm). Độ dài cạnh
MN là:
A. 8cm B. 5cm C. 6cm D. 7cm
Bài 2. (1,5 điểm) Ba lớp 7A, 7B, 7C cùng tham gia lao động trồng cây. Biết số cây ở lớp 7A, 7B, 7C được
trồng tỉ lệ với các số 3;5;8 và hai lần số cây của lớp 7A cộng với 4 lần số cây lớp 7B trồng được nhiều hơn
số cây lớp 7C trồng được là 108 cây. Tính số cây trồng được của mỗi lớp
Bạn đang xem tài liệu "Đề thi học kì 2 Toán Lớp 7 Sách Chân trời sáng tạo - Đề số 4 (Có lời giải chi tiết)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- de_thi_hoc_ki_2_toan_lop_7_sach_chan_troi_sang_tao_de_so_4_c.pdf
Nội dung text: Đề thi học kì 2 Toán Lớp 7 Sách Chân trời sáng tạo - Đề số 4 (Có lời giải chi tiết)
- c ĐỀ THI HỌC KÌ II: ĐỀ SỐ 4 MÔN: TOÁN - LỚP 7 I. TRẮC NGHIỆM ( 2 điểm) Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm. Câu 1. Hai đại lượng xy, trong công thức nào tỉ lệ nghịch với nhau: 5 A. yx5 B. x C. yx5 D. xy5 y Câu 2. Trong các sự kiện, hiện tượng sau, đâu là biến cố chắc chắn? A. Mặt Trời quay quanh Trái Đất B. Khi gieo đồng xu thì được mặt ngửa C. Có 9 cơn bão đổ bộ vào nước ta trong năm tới D. Ngày mai, Mặt Trời mọc ở phía Đông Câu 3. Giá trị của biểu thức: xx32 2 tại x 2 là: A. 16 B. 16 C. 0 D. 8 Câu 4. Biểu thức nào sau đây không là đơn thức? A. 42x2 y x B. 2x C. 2x y x 2 D. 2021 Câu 5. Sắp xếp các hạng tử của đa thức Pxxxx 274324 theo lũy thừa giảm dần của biến ta được: A. Pxxxx 432 274 B. Pxxxx 724234 C. P x 4 7 x2 2 x 3 x 4 D. Pxxxx 432274 Câu 6. Cho tam giác M N P có NPcmMPcm 1,7 . Độ dài cạnh MN là một số nguyên (cm). Độ dài cạnh MN là: A. 8cm B. 5cm C. 6cm D. 7cm Câu 7. Cho tam giác ABC có AB AC. Trên các cạnh AB và AC lấy các điểm D,E sao cho AD AE. Gọi K là giao điểm của BE và CD. Chọn câu sai. A. BE CD B. BK KC C. BD CE D. DKKC Câu 8. Giao điểm của 3 đường trung trực của tam giác A. cách đều 3 cạnh của tam giác. B. được gọi là trực tâm của tam giác.
- C. cách đều 3 đỉnh của tam giác. 2 D. cách đỉnh một đoạn bằng độ dài đường trung tuyến đi qua đỉnh đó. 3 II. PHẦN TỰ LUẬN (8,0 điểm) Bài 1. (1 điểm) Tìm x biết: 5 2x 3 2 12 a) b) xx .0 34 45 Bài 2. (1,5 điểm) Ba lớp 7A, 7B, 7C cùng tham gia lao động trồng cây. Biết số cây ở lớp 7A, 7B, 7C được trồng tỉ lệ với các số 3;5;8 và hai lần số cây của lớp 7A cộng với 4 lần số cây lớp 7B trồng được nhiều hơn số cây lớp 7C trồng được là 108 cây. Tính số cây trồng được của mỗi lớp Bài 3. (1,5 điểm) Cho hai đa thức: fxxxxxx 535 437 và gxxxxx 38314232 . a) Thu gọn và sắp xếp hai đa thức fx và gx theo lũy thừa giảm dần của biến. b) Tính f x g x và tìm nghiệm của đa thức f x g x . Bài 4. (3,5 điểm) Cho tam giác ABC vuông tại A. a) Tia phân giác của góc B cắt cạnh AC ở D. Kẻ DE vuông góc với BC tại E. Chứng minh rằng ΔABD = ΔEBD. b) So sánh AD và DC. c) Tia ED cắt BA tại G. Gọi I là trung điểm GC. Chứng minh rằng B, D, I thẳng hàng. Bài 5. (0,5 điểm) Cho x;; y z tỉ lệ thuận với 3 ; 4 ; 5 . Tính giá trị của biểu thức 2 x y z A 2024 x y y z 506. 6 LỜI GIẢI CHI TIẾT I. Trắc nghiệm 1.B 2. D 3. A 4. C 5. A 6. D 7. D 8. C Câu 1. Phương pháp: Vận dụng định nghĩa về đại lượng tỉ lệ nghịch. Cách giải:
- 5 Ta có: x là hai đại lượng tỉ lệ nghịch với nhau. y Chọn B. Câu 2. Phương pháp: Biến cố chắc chắn: Là biến cố biết trước được luôn xảy ra Cách giải: Đáp án A Biến cố không thể Đáp án B Biến cố ngẫu nhiên Đáp án C Biến cố ngẫu nhiên Đáp án D Mặt Trời luôn mọc ở phía Đông nên sự kiện “Ngày mai, Mặt Trời mọc ở phía Đông." Luôn xảy ra nên là biến cố chắc chắn. Chọn D. Câu 3. Phương pháp: Thay x 2 vào biểu thức xx32 2 để tính. Cách giải: Thay vào biểu thức ta có: 2 32 2. 2 8 2.4 16 Chọn A. Câu 4. Phương pháp: Đơn thức là biểu thức đại số chỉ gồm một số, hoặc một biến, hoặc một tích giữa các số và các biến. Cách giải: Biểu thức: 2xy x2 không là một đơn thức. Chọn C. Câu 5. Phương pháp: Thu gọn đa thức bằng cách nhóm các hạng tử đồng dạng lại rồi thu gọn chúng. Sau đó sắp xếp theo lũy thừa giảm dần của biến. Cách giải:
- Sắp xếp theo lũy thừa giảm dần của biến: Pxxxx 432 274 Chọn A. Câu 6. Phương pháp: Sử dụng hệ quả của bất đẳng thức trong tam giác: + Tồn tại một tam giác có độ dài ba cạnh là abc,, nếu b c a b c . + Trong trường hợp xác định được a là số lớn nhất trong ba số abc,, thì điều kiện tồn tại tam giác là a b c . Cách giải: Xét tam giác MNP , ta có: NPMPMNNPMP 1717 MN 68MN Vì độ dài cạnh MN là một số nguyên nên MNcm 7 Chọn D. Câu 7. Phương pháp: Dựa vào tính chất hai tam giác bằng nhau . Cách giải: Xét tam giác ABE và tam giác ADC có + AD = AE (GT) + Góc A chung + AB = AC (GT) Suy ra ABE ACD c g c ABE ACD; ADC AEB (hai góc tương ứng) và BE = CD (hai cạnh tương ứng) nên A đúng.
- Lại có ADCBDC 180 ; AEBBEC 180 (hai góc kề bù) mà A D C A E B (cmt) Suy ra B D C B E C . Lại có ABACADAEgt ; ABADACAEBDEC nên C đúng. Xét tam giác KBD và tam giác KCE có + ABEACDcmt + B D E C c m t + BDCBECcmt Nên KBDKCEgcg KBKCKDKE; (hai cạnh tương ứng) nên B đúng, D sai. Câu 8. Phương pháp Tính chất đồng quy của 3 đường trung trực của tam giác Lời giải 3 đường trung trực của tam giác đồng quy tại 1 điểm, điểm này cách đều 3 đỉnh của tam giác. Chọn C. II. PHẦN TỰ LUẬN (8,0 điểm) Bài 1. Phương pháp ac a) Vận dụng định nghĩa hai phân số bằng nhau: Nếu thì a d b c . bd b) Phương trình A x .0 B x , chia hai trường hợp để giải: + Trường hợp 1: Ax 0 + Trường hợp 2: Bx 0 Cách giải: 523x 2 12 a) b) xx .0 34 45 Trường hợp 1:
- 4.523.3x 1 x2 0 2089x 4 2 2098x 2 11 x 201x 42 1 11 x xx ; 20 22 1 Trường hợp 2: Vậy x 2 20 x 0 5 2 x 5 112 Vậy xxx ;; 225 Câu 2 Phương pháp: Gọi số cây ba lớp 7A, 7B, 7C trồng được lần lượt là x y,, z (cây) (điều kiện: x,, y z * ) Áp dụng tính chất của dãy tỉ số bằng nhau để giải toán. Cách giải: Gọi số cây ba lớp 7A, 7B, 7C trồng được lần lượt là (cây) (điều kiện: ) x y z Vì số cây ở lớp 7A, 7B, 7C được trồng tỉ lệ với các số 3;5;8 nên ta có: 3 5 8 Vì hai lần số cây của lớp 7A cộng với 4 lần số cây lớp 7B trồng được nhiều hơn số cây lớp 7C trồng được là 108 cây nên ta có: 24108xyz xyzxyzxyz 2424108 Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: 6 3586208620818 x Khi đó, 618 x (tmđk) 3 y 630 y (tmđk) 5 z 6 y 48 (tmđk) 8 Vậy số cây ba lớp trồng được là: Lớp 7A: 18 cây; lớp 7B: 30 cây, lớp 7C: 48 cây. Bài 3. Phương pháp: a) Thu gọn đa thức bằng cách nhóm các hạng tử đồng dạng lại rồi thu gọn chúng. Sau đó sắp xếp theo lũy thừa giảm dần của biến.
- b) Tính f x g x ta nhóm các hạng tử đồng dạng lại rồi thu gọn chúng. Tìm nghiệm của đa thức , ta giải phương trình f x g x 0 Cách giải: a) fxxxxxx 535 437 fxxxxxx 553 437 fxxx 3 7 g x 3 x2 x 3 8 x 3 x 2 14 g x x3 3 x 2 3 x 2 8 x 14 g x x3 8 x 14 b) f x g x x33 x 7 x 8 x 14 xxxx337814 xxxx33 8714 77x Ta có: 770x 77x x 1 Vậy x 1 là nghiệm của đa thức fxgx Bài 4. Phương pháp: Sử dụng tính chất tia phân giác, các phương pháp chứng minh hai tam giác vuông bằng nhau, mối quan hệ giữa cạnh và góc trong tam giác, tính chất của tam giác cân. Cách giải: a) Chứng minh rằng ΔABD = ΔEBD.
- Xét hai tam giác vuông ΔABD và ΔEBD ta có: AE 900 AD = DE (vì BD là tia phân giác) BD cạnh chung Suy ra ΔABD = ΔEBD (cạnh huyền – cạnh góc vuông) AD = DE, BA = BE (cạnh tương ứng) (1) b) So sánh AD và DC Xét ΔDEC vuông tại E ta có: DC > DE Lại có AD = DE (cmt) DC > AD c) Chứng minh rằng B, D, I thẳng hàng. Xét ΔBGC có AC AB, GE AC Suy ra D là trực tâm của ΔBGC.(2) Xét hai tam giác vuông ΔADG và ΔEDC ta có: ADG = EDC (đối đỉnh) AE 900 AD = DE (cm câu b)) Suy ra ΔADG = ΔEDC (cạnh gv – góc nhọn) AG = EC (cạnh tương ứng) (3) từ (1), (3) suy ra BA +AG = BE + EC BG = BC Vậy ΔBGC là tam giác cân tại B. (4) từ (2), (4) suy ra BD là đường trung tuyến của tam giác ΔBGC. Hay B, D, I thẳng hàng. (đpcm) Bài 5. Phương pháp: - Bước 1: Từ đề bài suy ra tỉ lệ - Bước 2: Đặt các tỉ lệ bằng k từ đó suy ra x y,, z theo k - Bước 3: Thay vào đề bài và tính toán - Bước 4: Kết luận Cách giải: xk 3 x y z x y z Vì x;; y z tỉ lệ thuận với 3;4;5 . Đặt k y 4 k . Khi đó, 3 4 5 3 4 5 zk 5 2 345k k k A 2024 3 k 4 k 4 k 5 k 506. 6 A 2024 k k 506. 2 k 2
- Akk 2024.506.4.22 Akk 2024202422 A 0 Vậy A 0.