Đề thi học kì 2 Toán Lớp 7 Sách Cánh diều - Đề số 5 (Có lời giải chi tiết)

Câu 7. Tung ngẫu nhiên hai đồng xu cân đối. Trong các biến cố sau, biến cố nào không là biến cố ngẫu 
nhiên? 
A. “Số đồng xu xuất hiện mặt sấp không vượt quá 2" 
B. “Số đồng xu xuất hiện mặt sấp gấp 2 lần số đồng xu xuất hiện mặt ngửa” 
C. “Có ít nhất một đồng xu xuất hiện mặt sấp” 
D. “Số đồng xu xuất hiện mặt ngửa gấp 2 lần số đồng xu xuất hiện mặt sấp” 

Bài 1. (1,5 điểm) Hai ô tô khởi hành cùng một lúc A đến B . Xe thứ nhất đi từ A đến B hết 6 giờ, xe thứ 
hai đi từ B đến A hết 3 giờ. Đến chỗ gặp nhau, xe thứ hai đã đi được một quãng đường dài hơn xe thứ nhất 
đã đi là 54 km. Tính quãng đường AB . 

pdf 9 trang Bích Lam 19/06/2023 4500
Bạn đang xem tài liệu "Đề thi học kì 2 Toán Lớp 7 Sách Cánh diều - Đề số 5 (Có lời giải chi tiết)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdfde_thi_hoc_ki_2_toan_lop_7_sach_canh_dieu_de_so_5_co_loi_gia.pdf

Nội dung text: Đề thi học kì 2 Toán Lớp 7 Sách Cánh diều - Đề số 5 (Có lời giải chi tiết)

  1. c ĐỀ THI HỌC KÌ II: ĐỀ SỐ 5 MÔN: TOÁN - LỚP 7 I. TRẮC NGHIỆM (2 điểm) Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước đáp án đó vào bài làm. Câu 1. Tam giác ABC có BCcmACcm 1,8. Tìm độ dài cạnh AB, biết độ dài này là một số nguyên cm . A. 6cm B. 7cm C. 8cm D. 9cm Câu 2. Tập hợp các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra là B = {1; 2; 3; ; 29,30}. Tính xác suất để kết quả rút ra là một thẻ có số chia hết cho 3 1 1 A. 6 B. 30 C. D. 2 3 Câu 3. Cho ABC có ABcmBCcmACcm 6,8,10. Số đo góc A ;; B  C theo thứ tự là: A.  BCA   B.  CAB   C.  ABC   D.  CBA   Câu 4. Khẳng định nào sau đây là đúng? A. Số 0 không phải là một đa thức. B. Nếu ABC cân thì trọng tâm, trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh cùng nằm trên một đường thẳng. C. Nếu ABC cân thì trọng tâm, trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh cùng nằm trên một đường tròn. D. Số 0 được gọi là một đa thức không và có bậc bằng 0 Câu 5. Nghiệm của đa thức: Pxx 153 là: 1 1 A. B. C. 5 D. 5 5 5 Câu 6. Cho biểu đồ biểu diễn kết quả học tập của học sinh khối 7.
  2. Số học sinh học lực trung bình ít hơn số học sinh học lực khá bao nhiêu? A. 88 học sinh; B. 90 học sinh; C. 92 học sinh; D. 94 học sinh. Câu 7. Tung ngẫu nhiên hai đồng xu cân đối. Trong các biến cố sau, biến cố nào không là biến cố ngẫu nhiên? A. “Số đồng xu xuất hiện mặt sấp không vượt quá 2" B. “Số đồng xu xuất hiện mặt sấp gấp 2 lần số đồng xu xuất hiện mặt ngửa” C. “Có ít nhất một đồng xu xuất hiện mặt sấp” D. “Số đồng xu xuất hiện mặt ngửa gấp 2 lần số đồng xu xuất hiện mặt sấp” Câu 8. Cho ABC vuông tại A, có  C 300 , đường trung trực của BC cắt AC tại M. Em hãy chọn câu đúng: A. BM là đường trung tuyến của ABC . B. BMAB . C. BM là phân giác của ABC . D. BM là đường trung trực của ABC . II. PHẦN TỰ LUẬN (8,0 điểm) Bài 1. (1,5 điểm) Hai ô tô khởi hành cùng một lúc A đến B . Xe thứ nhất đi từ A đến B hết 6 giờ, xe thứ hai đi từ B đến A hết 3giờ. Đến chỗ gặp nhau, xe thứ hai đã đi được một quãng đường dài hơn xe thứ nhất đã đi là 54 km. Tính quãng đường AB . Bài 2. (2,75 điểm) Cho các đa thức sau: 1 Pxxxxx 2333 242 2 Q x 3 x4 x 3 4 x 2 1,5 x 3 3 x 4 2 x 1 a) Thu gọn và sắp xếp các đa thức trên theo thứ tự số mũ của biến giảm dần. Xác định bậc, hệ số cao nhất và hệ số tự do của các đa thức đã cho. b) Xác định P x Q x , P x Q x . 3 c) Xác định đa thức Rx thỏa mãn R x P x Q x x23 21 x x . 2 Bài 3. (3,25 điểm) Cho tam giác ABC cân tại A.Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM + AN = 2AB.
  3. a) Chứng minh rằng: BM = CN b) Chứng minh rằng: BC đi qua trung điểm của đoạn thẳng MN. c) Đường trung trực của MN và tia phân giác của BAC cắt nhau tại K. Chứng minh rằng B K M C K N từ đó suy ra KC vuông góc với AN. abccabbca Bài 4. (0,5 điểm) Cho abc, , 0 và thỏa mãn . Tính giá trị của biểu thức cba abbcca S . abc LỜI GIẢI CHI TIẾT I. Trắc nghiệm 1. C 2. D 3. B 4. B 5. B 6. A 7. A 8. C Câu 1. Phương pháp: Áp dụng bất đẳng thức tam giác để tìm cạnh còn lại. Cách giải: Áp dụng bất đẳng thức cho tam giác ABC ta có: ACBCABACBC 8181 AB 79AB ABcm8 Chọn C. Câu 2. Phương pháp: Tìm các số chia hết cho 3 từ 0 đến 30 Cách giải: Các số chia hết cho 3 từ tập B = {1; 2; 3; ; 29,30} là 3,6,9,12,15,18,21,24,27,30 => Có tất cả 10 số chia hết cho 3. 10 1 Vậy xác suất để thẻ rút ra là số chia hết cho 3 là: 30 3 Chọn D. Câu 3.
  4. Phương pháp: So sánh độ dài các cạnh rồi dựa vào mối quan hệ giữa cạnh và góc trong một tam giác để so sánh các góc với nhau. Trong một tam giác, góc đối diện với cạnh lớn hơn thì góc lớn hơn. Cách giải: ABC có ABcmBCcmACcm 6,8,10. Ta có: A B B C A C   CAB Chọn B. Câu 4. Phương pháp: Áp dụng định nghĩa về đa thức và tính chất tam giác cân. Cách giải: Xét từng đáp án: A. Số 0 không phải là một đa thức. Sai Vì số 0 là đa thức 0 B. Nếu ABC cân thì trọng tâm, trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh cùng nằm trên một đường thẳng. Đúng: (vẽ một tam giác cân và xác định trọng tâm, trực tâm, điểm cách đều 3 đỉnh, điểm nằm trong tam giác và cách đều 3 cạnh ta thấy chúng cùng nằm trên một đường thẳng) C. Nếu ABC cân thì trọng tâm, trực tâm, điểm cách đều ba đỉnh, điểm (nằm trong tam giác) cách đều ba cạnh cùng nằm trên một đường tròn. Sai Vì chúng nằm trên cùng 1 đường thẳng. D. Số 0 được gọi là một đa thức không và có bậc bằng 0. Sai Vì số 0 được gọi là đa thức không và nó là đa thức không có bậc. Chọn B Câu 5. Phương pháp: Tìm nghiệm của đa thức Px , ta giải phương trình Px 0 Cách giải: Ta có: Px 0 1530x 153x 1 x 5 1 Vậy x là nghiệm của đa thức P x 15 x 3 5 Chọn B. Câu 6.
  5. Phương pháp: Tìm số học sinh trung bình và số học sinh khá. Sau đó tìm hiệu của chúng. Cách giải: Số học sinh khá là 140 và số học sinh trung bình là 52. Số học sinh học lực trung bình ít hơn số lượng học sinh học lực khá là 140 – 52 = 88 (học sinh). Vậy số học sinh học lực trung bình ít hơn 88 học sinh so với số lượng học sinh học lực khá. Chọn A. Câu 7. Phương pháp: Biến cố ngẫu nhiên có khi kết quả có tính ngẫu nhiên, không đoán trước được Cách giải: Vì đồng xu chỉ có 2 mặt nên sự kiện “số đồng xu xuất hiện mặt sấp không vượt quá 2” chắc chắn xảy ra, ta có thể biết được sự kiện này sẽ xảy ra trước khi thực hiện phép thử nên đây không phải là biến cố ngẫu nhiên. Do đó phương án A đúng. Chọn A. Câu 8. Phương pháp: Áp dụng tính chất tam giác cân, tính chất đường trung trực của đoạn thẳng, định lý tổng 3 góc trong tam giác. Cách giải: Vì M thuộc đường trung trực của BC BMMC (tính chất điểm thuộc đường trung trực của đoạn thẳng) BMC cân tại M (dấu hiệu nhận biết tam giác cân) MBC  C 300 (tính chất tam giác cân) Xét ABC có: A  ABC  C 1800 (định lý tổng 3 góc trong tam giác) ABC 1800   C A 180 0 30 0 90 0 60 0 ABM  MBC  ABC 600  ABM 60 0  MBC 60 0 30 0 30 0 ABM  MBC BM là phân giác của ABC .
  6. Chọn C. II. PHẦN TỰ LUẬN (8,0 điểm) Bài 1. Phương pháp: a c c a Tính chất dãy tỉ số bằng nhau: b d d b Cách giải: Gọi quãng đường của xe thứ nhất đi được từ A đến chỗ gặp là x (km) x 0 Gọi quãng đường của xe thứ hai đi được từ B đến chỗ gặp là y (km) y 0 xy Ta có: 36 Quãng đường đi được của xe thứ hai dài hơn xe thứ nhất 54 km nên yx 54 xyyx 54 Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 18 36633 x Do đó 18 54 x (thỏa mãn) 3 y 18108y (thỏa mãn) 6 Quãng đường AB dài là 54108162 (km) Vậy quãng đường AB dài là 162 (km). Bài 2. Phương pháp: + Để thu gọn đa thức ta thực hiện phép cộng các đơn thức đồng dạng. + Bậc của đa thức là bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức đó. + Ta có thể mở rộng cộng (trừ) các đa thức dựa trên quy tắc “dấu ngoặc” và tính chất của các phép toán trên số. + Đối với đa thức một biến đã sắp xếp còn có thể cộng (trừ) bằng cách đặt tính theo cột dọc tương tự cộng (trừ) các số. Cách giải: a) 1 P x 2 x x2 3 x 4 3 x 2 3 2 1 3x4 x 2 3 x 2 2 x 3 2 5 3x42 x 2 x 3 2
  7. Vậy: P có bậc là 4 ; Hệ số cao nhất là 3; Hệ số tự do là 3 Qxxxxxxx 341,532143234 331,5421xxxxxx44332 5 xxx32421 2 5 Vậy: Q có bậc là 3; Hệ số cao nhất là ; Hệ số tự do là 1 2 b) 4232 55 PxQxxxxxxx 323421 22 55 342231xxxxxx4322 22 513 32xxx432 22 4232 55 P xQ xxxxxxx 323421 22 55 323421xxxxxx4232 22 55 3x4 x 3 x 2 4 x 2 2 x 2 x 3 1 22 53 3x4 x 3 x 2 4 x 4 22 3 c) R xP xQ xxxx 2321 2 43243223 513533 R xxxxxxxxxxx 3234421 22222 5 5 13 3 3 Rxxxxxxxxx 34 3 4 3 3 2 2 2 4 2 4 2 xx 3 1 2 2 2 2 2 3 R xxxxxx 5742323 21 2 3 R x 2 x3 x 1 5 x 3 7 x 2 4 x 2 2 3 R x 2 x3 x 1 5 x 3 7 x 2 4 x 2 2 3 R x 2 x3 5 x 3 7 x 2 x 4 x 2 1 2 11 R x 3 x32 7 x x 1 2
  8. Bài 3. Phương pháp: a) Sử dụng tính chất tam giác cân, sau đó dùng giả thiết đã cho lập luận để suy ra điều phải chứng minh. b) Sử dụng các trường hợp bằng nhau của tam giác để suy ra các cặp tam giác bằng nhau, từ đó suy ra điều phải chứng minh. c) Sử dụng các trường hợp bằng nhau của tam giác để chứng minh hai góc bằng nhau, sử dụng thêm tính chất hai góc kề bù để suy ra điều phải chứng minh. Cách giải: a) Do tam giác ABC cân tại A, suy ra AB = AC. Ta có: AM + AN = AB – BM + AC + CN = 2AB – BM + CN. Ta lại có AM + AN = 2AB(gt), nên suy ra 22ABBMCNAB . BMCNBMCN0 b) Gọi I là giao điểm của MN và BC. Vậy BM = CN (đpcm) Qua M kẻ đường thẳng song song với AC cắt BC tại E. Do ME // NC nên ta có: IMECNI (hai góc so le trong) MEI NCI (hai góc so le trong) MEBACB (hai góc đồng vị) nên MEB ABCMBE cân tại M nên MB = ME. Do đó, ME = CN. Ta chứng minh được MEINCIg c g( ) Suy ra MI = NI (hai cạnh tương ứng), từ đó suy ra I là trung điểm của MN. c) Xét hai tam giác MIK và NIK có: MI = IN (cmt), MIKNIK 900 IK là cạnh chung. Do đó MIKNIKc g c( ) . Suy ra KM = KN (hai cạnh tương ứng). Xét hai tam giác ABK và ACK có: AB = AC(gt), BAK CAK (do BK là tia phân giác của góc BAC), AK là cạnh chung, Do đó ABKACK c g( ) c . Suy ra KB = KC (hai cạnh tương ứng). Xét hai tam giác BKM và CKN có: MB = CN, BK = KN, MK = KC,
  9. Do đó BKMCKNc c c( ) , Suy ra M B K K C N . Mà MBKACKACKKCNKCAN  180:00 290. (đpcm) Bài 4. Áp dụng tính chất của dãy tỉ số bằng nhau. Cách giải: - Trường hợp 1: ,abc , 0 và abcabcacbbca 0;; thay vảo biểu thức S ta được: c a b S 1. abc - Trường hợp 2: abc, , 0 và abc 0. Áp dụng tính chất của dãy tỉ số bằng nhau ta được: abccabbcaabccabbca 1 cbacba abc 2 Suy ra cab 2 thay vào biểu thức S ta được: bca 2 2.2.2cab S 8 abc abccabbca Vậy: S 1 khi và abc,,0; abc 0 cba S 8 khi và abc 0 .