Đề thi học kì 2 Toán Lớp 7 - Đề 13 (Kèm đáp án và thang điểm)

Câu 4 (3,0 điểm

Cho tam giác ABC có AB = 6 cm; AC = 8 cm; BC = 10 cm.

a) Chứng minh tam giác ABC vuông tại A.

b) Vẽ tia phân giác BD của góc ABC (D thuộc AC), từ  D vẽ DE ^ BC (E Î BC). 

Chứng minh DA = DE.

c) Kéo dài ED và BA cắt nhau tại F. Chứng minh DF > DE.

d) Chứng minh đường thẳng BD là đường trung trực của đoạn thẳng FC.

docx 4 trang Thái Bảo 26/07/2023 2720
Bạn đang xem tài liệu "Đề thi học kì 2 Toán Lớp 7 - Đề 13 (Kèm đáp án và thang điểm)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • docxde_thi_hoc_ki_2_toan_lop_7_de_13_kem_dap_an_va_thang_diem.docx

Nội dung text: Đề thi học kì 2 Toán Lớp 7 - Đề 13 (Kèm đáp án và thang điểm)

  1. ĐỀ 13 ĐỀ THI HỌC KỲ II TOÁN 7 Thời gian: 90 phút Câu 1 (2,0 điểm) Thực hiện các phép tính sau: 18 15 a) . 24 21 b) 9 3,6 4,1 1,3 . Câu 2 (3,0 điểm) 1 5 a) Tìm x ¡ , biết x . 4 6 b) Tính giá trị của biểu thức A 5x2 – 3x – 16 khi x 2 . 2 c) Cho đơn thức A=4x2 y2 -2x3y2 . Hãy thu gọn và chỉ ra hệ số, phần biến và bậc của đơn thức A. Câu 3 (1,5 điểm) Cho hai đa thức f x 2x2 3x3 5x 5x3 x x2 4x 3 4x2 và g x 2x2 x3 3x 3x3 x2 x 9x 2. a) Tìm h x f x g x . b) Tìm nghiệm của đa thức h x . Câu 4 (3,0 điểm) Cho tam giác ABC có AB = 6 cm; AC = 8 cm; BC = 10 cm. a) Chứng minh tam giác ABC vuông tại A. b) Vẽ tia phân giác BD của góc ABC (D thuộc AC), từ D vẽ DE  BC (E BC). Chứng minh DA = DE. c) Kéo dài ED và BA cắt nhau tại F. Chứng minh DF > DE. d) Chứng minh đường thẳng BD là đường trung trực của đoạn thẳng FC. Câu 5. (0,5 điểm) Cho f (x) ax3 bx2 cx d trong đó a,b,c,d ¢ và thỏa mãn b 3a c. Chứng minh rằng f (1). f ( 2) là bình phương của một số nguyên.
  2. Hết ĐÁP ÁN Bài Sơ lược các bước giải Điểm Câu 1 2,0 18 15 3 5 21 20 0.5 Phần a 24 21 4 7 28 28 1 điểm 21 20 41 0.5 28 28 Phần b 9 3,6 4,1 1,3 9 3,6 4,1 1,3 0.25 1 điểm 9 1,3 3,6 4,1 10,3 7,7 2,6 0.75 Câu 2 3,0 1 5 1 5 1 5 x x hoặc x 0.5 4 6 4 6 4 6 Phần a 7 13 + HS xét hai trường hợp tính được x hoặc x 0.25 1 điểm 12 12 7 13 KL: x ;  0.25 12 12 Tính giá trị của biểu thức A = 5x2 – 3x – 16 tại x = -2 Thay x = -2 vào biểu thức A, Phần b 0. 5 ta được: A= 5.(-2)2 – 3.(-2) - 16 1 điểm A=5.4 + 6 – 16 = 10 0.25 Vậy A=10 khi x = -2. 0.25 2 2 2 2 Phần c A 4x2 y2 2x3 y2 4x2 y2. 2 . x3 . y2 0.25
  3. 1 điểm A 4x2 y2.4.x6.y4 16x8 y6 0.5 Đơn thức A có: Hệ số là 16; phần biến là x8 y6 ; bậc là 14. 0.25 Câu 3 1,5 f (x) 2x3 3x2 2x 3; Phần a 0.25 g(x) 2x3 3x2 7x 2 1 điểm HS làm đầy đủ, chi tiết được h(x) = f (x) g(x) 5x 1 0.75 5x 1 0 5x 1 0.25 Phần b 1 x 5 0,5 điểm 1 Vậy x là nghiệm của đa thức h(x) 0.25 5 Câu 4 3,0 F A D C E B Ta có AB= 6(cm) (gt); AC = 8(cm) (gt) nên AB2 + AC2 = 62 + 82 =100 (cm) (1) 0.5 Phần a Mà BC = 10(cm) (gt) nên BC2 = 102 = 100 (cm) (2) 1 điểm Từ (1) và (2) suy ra AB2 + AC2 = BC2 0.25 Xét tam giác ABC có AB2 + AC2 = BC2(chứng minh trên) nên tam giác ABC vuông tại 0.25 A (Định lí pytago đảo)
  4. Phần b Vì BD là phân giác của góc ABC; DA, DE lần lượt là khoảng cách từ D đến AB, BC 0.5 1 điểm HS suy ra DA = DE 0.5 Phần c * Tam giác ADF vuông tại A nên DF > AD 0.25 0.5 điểm * Lại có AD = DE (chứng minh trên) nên DF > DE 0.25 * HS chứng minh BF = BC suy ra B thuộc đường trung trực FC (3) 0.25 Phần d * HS chứng minh DF = DC suy ra D thuộc đường trung trực FC (4) 0.5 điểm 0.25 * Từ (3) và (4) suy ra BD là đường trung trực của FC Câu 5 0,5 Ta có f (1) a b c d. 0.25 f ( 2) 8a 4b 2c d. 0.5 Suy ra f (1) f ( 2) 9a 3b 3c. Mà b 3a c suy ra f (1) f ( 2). 0.25 2 2 Suy ra f (1). f ( 2)  f (1) a b c d . ĐPCM. Điểm toàn bài 10 điểm